USVNL11 Sudoku Puzzel Variant: Twee Afhankelijke Sudoku’s 01

 1,50

Deze Sudoku Variatie is uitdagend door de twee Sudoku’s, gemerkt A en B,  die afhankelijk van elkaar zijn.
Deze afhankelijkheid is dat er vier cijferparen uitwisselbaar met elkaar zijn in deze twee Sudoku op dezelfde positie.
Van een uitwisselbaar paar zijn deze twee posities gegeven.
Bevat bijvoorbeeld het middelste veld van Sudoku het cijfer 1 en het middelste veld van Sudoku B het cijfer 2 dan zijn de cijfers 1 en 2 met elkaar uitwisselbaar.
Overal waar in Sudoku A het cijfer 1 staat of later logisch kan worden afgeleid moet het overeenkomstige veld van Sudoku B het cijfer 2 bevatten. Hetzelfde geldt voor het cijfer 2 in Sudoku A, het cijfer 1 en het cijfer 2 in Sudoku B.
De unieke oplossing van de twee afhankelijke Sudoku’s kan logisch worden afgeleid met behulp van deze afhankelijke eigenschap en met de Sudoku oplostechniek NAUWKEURIG TELLEN.

Bijlage 1 bevat een grote print van deze puzzel om zelf op te lossen of om het mogelijk stap-voor-stap oplospad te kunnen volgen.

 

Artikelnummer: USVNL11 Categorieën: , , , , Tags: , ,

Beschrijving

Titel: Twee Afhankelijke Sudoku’s 01
Aantal pagina’s: 11
Artikelnummer: USVNL11

Als je deze twee afhankelijke 9 x 9 Sudoku’s juist hebt opgelost bevatten in Sudoku A en in Sudoku B elke kolom, elke rij, en elk blok van 3 x 3 velden de cijfers 1 t.e.m. 9 precies eenmaal.

Deze 2 Sudoku’s zijn op de volgende manier van elkaar afhankelijk:

Per Sudoku zijn er 4 koppels van 2 verschillende cijfers gevormd, die onderling uitwisselbaar zijn.
Bijvoorbeeld: in Sudoku A correspondeert het gemarkeerde veld D2, dat het cijfer 3 bevat, met het gemarkeerde veld M2 in Sudoku B, dat het cijfer 5 bevat.
De cijfers 3 van Sudoku A en 5 van Sudoku B zijn onderling uitwisselbaar. Dit betekent dat, daar waar in Sudoku A of Sudoku B het cijfer 3 of 5 al is ingevuld (of later kan worden ingevuld) de corresponderende velden deze Sudoku’s het cijfer 5 of 3 moeten bevatten.

Voorbeeld: het gemarkeerde veld N9 in Sudoku B bevat al het cijfer 5, dus moet in blauw veld E9 van Sudoku A het cijfer 3 worden ingevuld, etc. (zie ook veld C3 van Sudoku A, etc.).

Sudoku A heeft met de 24 gegeven cijfers 211 verschillende oplossingen en Sudoku B, met de 19 gegeven cijfers, meer dan 1.000 verschillende oplossingen.

Door de juiste aan elkaar gekoppelde cijfers logisch af te leiden zijn beide Sudoku’s, in wisselwerking met elkaar, uniek oplosbaar.
Onderstaande tabel helpt je daarbij:

Bijlage 1 bevat een grote print van deze puzzel om zelf op te lossen of om het mogelijk stap-voor-stap oplospad te kunnen volgen.

Andere suggesties…

Translate »